### Plasmonics using Metal Nanoparticles

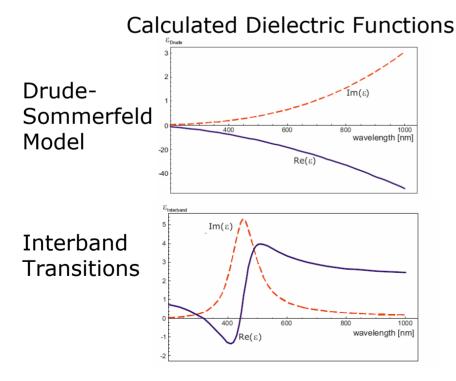
Tammy K. Lee and Parama Pal ECE 580 – Nano-Electro-Opto-Bio

April 1, 2007

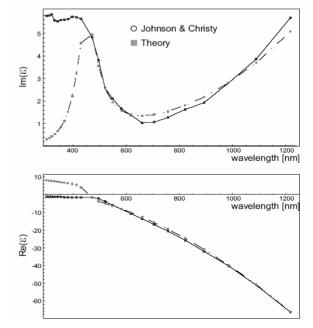
# Motivation

- Why study plasmonics?
  - Miniaturization of optics and photonics to subwavelength scales
  - Applications: fully integrated electro-opto circuits, high resolution microscopy, effective biosensors
- What is plasmonics?
  - Exploitation of the optical properties of surface plasmons (SP) in metals for local field enhancements and radiation confinement
  - Metal nanoparticles to create simple and novel structures (thin films, colloids, wires, shells, stars etc.)

# Surface Plasmons (SP)


- Observed since the late 17<sup>th</sup> century (e.g. Lycurgus cup)
  - Addition of gold powder to glass to color it red
  - Scattering  $\rightarrow$  looks green
  - Absorption → transmitted light looks red




- What is a SP?
  - EM wave propagates along surface of metaldielectric interface coupled to collection of oscillating free conduction electrons

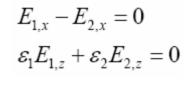
# **Optical Properties of Metals**

- To model the complex dielectric function of metals, need to consider:
  - (i) motion of free conduction electrons
  - (ii) interband transitions of bound electrons to conduction band given a excitation photon with sufficient energy



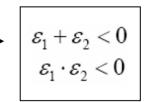
Theoretical vs. Experimental Results




#### SP at Metal-Dielectric Interface

 $k_{i,z}^2 = \frac{\varepsilon_i^2}{\varepsilon_1 + \varepsilon_2} k^2$ 

 $k_x^2 = \frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2} k^2 = \frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2} \frac{\omega^2}{c^2}$ 


- ε<sub>1</sub>(ω) complex dielectric funtion (e.g. metal), ε<sub>2</sub> real dielectric funtion (e.g. air)
- p-polarized wave satisfies wave equation:  $\nabla \times \nabla \times \vec{E}_i(\omega) \frac{\omega^2}{c^2} \varepsilon_i(\omega) \vec{E}_i(\omega) = 0$

- Solving these equation yields:
  - Normal component:
  - Dispersion relation:



 $\varepsilon_2, \mu_2$  $\varepsilon_3, \mu_3$ 

$$k_{x}E_{i,x} + k_{i,z}E_{i,z} = 0$$



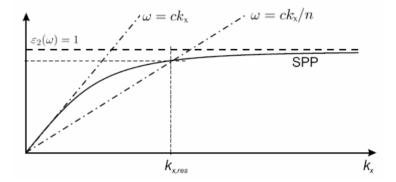
 $\varepsilon_1 = \varepsilon_1' + i\varepsilon_1''$ 



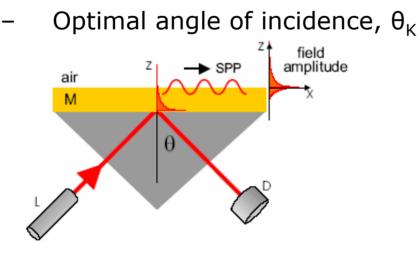
# Properties of SPP

• SPP Wavevector:

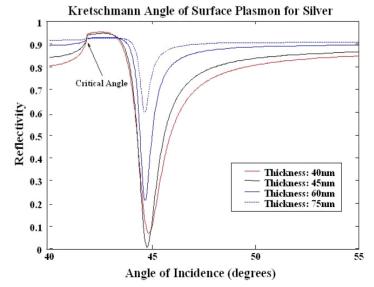
• Wavelength of SP:


$$\begin{aligned} k'_{x} &\approx \sqrt{\frac{\varepsilon_{1}'\varepsilon_{2}}{\varepsilon_{1}'+\varepsilon_{2}}} \frac{\omega}{c} \qquad k''_{x} \approx \sqrt{\frac{\varepsilon_{1}'\varepsilon_{2}}{\varepsilon_{1}'+\varepsilon_{2}}} \frac{\varepsilon_{1}''\varepsilon_{2}}{2\varepsilon_{1}'(\varepsilon_{1}'+\varepsilon_{2})} \frac{\omega}{c} \\ \lambda_{SPP} &= \frac{2\pi}{k'_{x}} \approx \sqrt{\frac{\varepsilon_{1}'\varepsilon_{2}}{\varepsilon_{1}'+\varepsilon_{2}}} \lambda \end{aligned}$$

- Propagation Length:  $\frac{1}{k_x''}$
- Sample numbers for  $\lambda = 630$  nm,  $\epsilon_2 = 1$

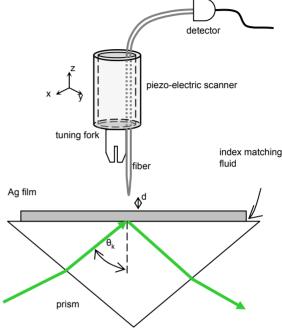

|                                   | Silver | Gold   |
|-----------------------------------|--------|--------|
| Propagation Length                | 60 µm  | 10 μm  |
| Penetration depth into metal      | 23 nm  | 28 nm  |
| Penetration depth into dielectric | 421 nm | 328 nm |

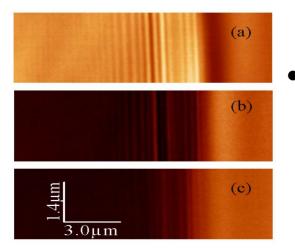
# SP Excitation


- Dispersion relation for SP
  - Momentum of SP larger than free space photon
  - Need dielectric material with n<1 to tilt light line</li>



- Kretschmann configuration
  - Glass prism





#### Reflectivity ( $\theta$ , film thickness)

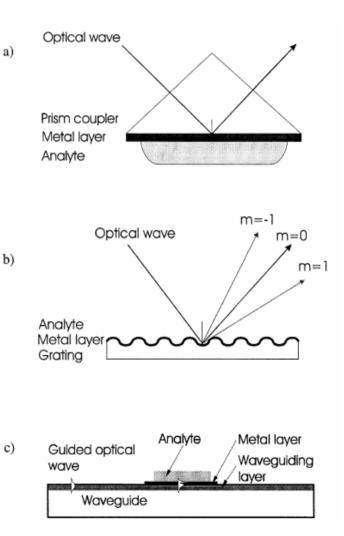


# Near-Field Microscopy

- Photon Scanning Tunneling Microscopy (PSTM)
  - Kretschmann configuration
  - Evanescent field couples into propagating mode of fiber
  - Topography & field intensity measurements

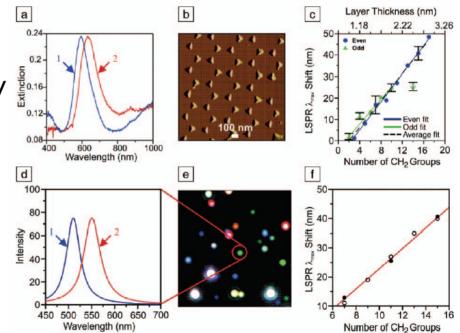





- Typical results
  - (a) SPP standing wave
  - (b) tuned away from  $\theta_{K_{i}}$
  - (c) s-polarized light

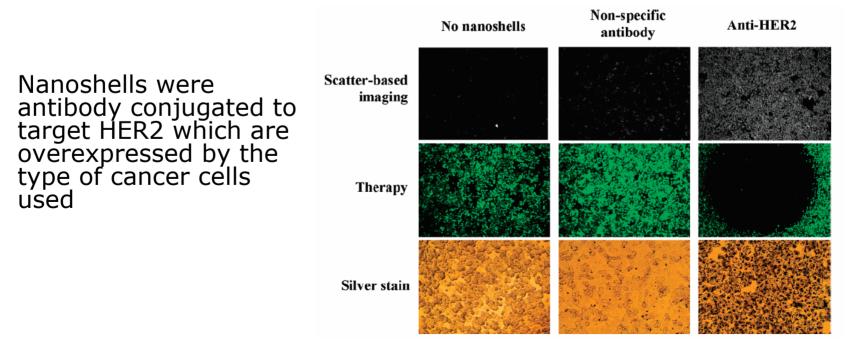
### Sensors

- Surface Plasmon Resonance (SPR) sensor for gas detection and biosensors
- Components:
  - optical system (light excitation, metal structure)
  - transducing material (whose properties being sensed)
  - detection system
- Sensor performance:
  - sensitivity, resolution, and operation range


# Types of Sensors

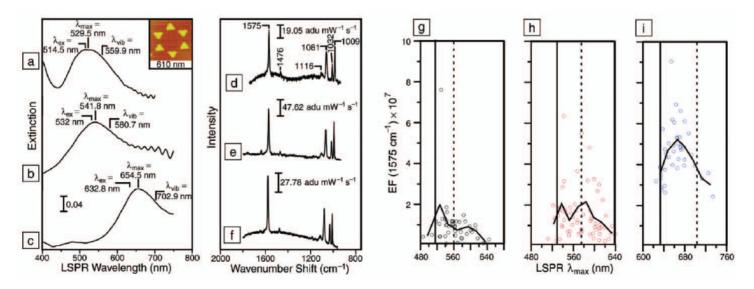
- Types of sensors:
  - prism-based
  - grating-based
  - Waveguide-based
- Materials & Fabrication:
  - prism-based: glass or plastic
  - grating-based: holograhic technique in plastic
  - waveguide-based: CVD for semiconductor, ion exchange for glasses




# Sensor Examples

- To measure chemisorption of 1 monolayer of hexadecanethiol using Ag nanoparticles
- Methods
  - Top Row:
     Nanosphere lithography
  - Bottom row:
     single Ag particles
- Results:
  - Both: ~40 nm shift in
     SPR from 1 monolayer




# **Biophotonics**

- Nanoshell with dielectric cores for imaging and therapy
  - silica cores with colloidal gold nanoparticles formed as shells
  - tuned to NIR for biological tissue to either scatter light for imaging or absorb light for therapy
- Results from Halas group: nanoshell particles tuned to both scatter and treat cancer cells by photothermally



### SERS

- SERS
  - enhancement of Raman signals which are typically very small
  - Attachment of molecule to nanoparticles results in high scattering cross sections





#### Surface Plasmon Subwavelength Optics

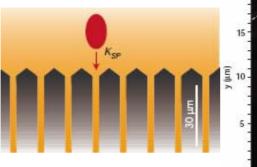
Issues:

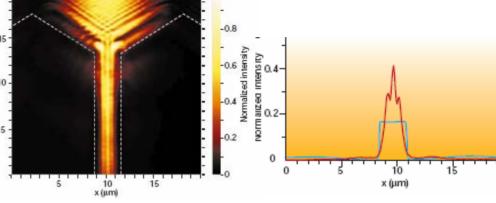
Scaling of interconnectsComponent dimensions – How to beat the diffraction limit ?

Solution — Surface Plasmons

•Recap: SPs are light waves that propagate along metal/dielectric interfaces on interaction with surface electrons

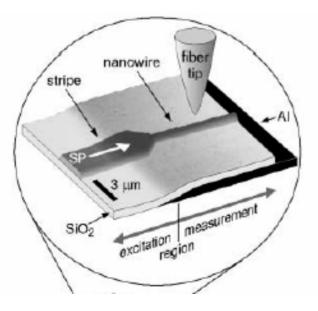
•Key aspect: different relative permittivities

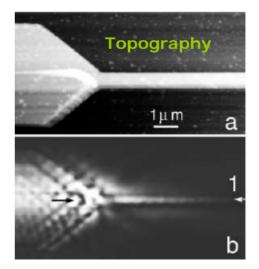

$$k_{SP} = k_0 \sqrt{\frac{\varepsilon_d \varepsilon_m}{\varepsilon_d + \varepsilon_m}}$$


$$\boxed{\text{Light Original Distribution}} \\ \begin{array}{c} \text{Conversion Original Distribution} \\ \text{by circuit Original Distribution} \\ \end{array} \\ \hline{\text{Surface Original Distribution}} \\ \hline{\text{Surface Original Distribution}} \\ \hline{\text{Light Original Distribution}} \\ \hline{\text{Lig$$

•Propagation distances: 10-100  $\mu$ m

#### **Surface Plasmon Waveguides**


- •Ordered arrays
- •Stripe Waveguides

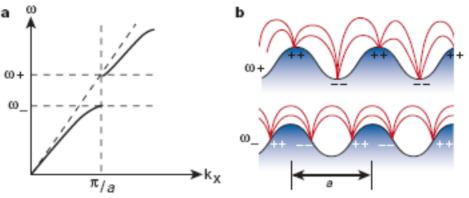





Nanowires

(Barnes et al, Nature 2003)

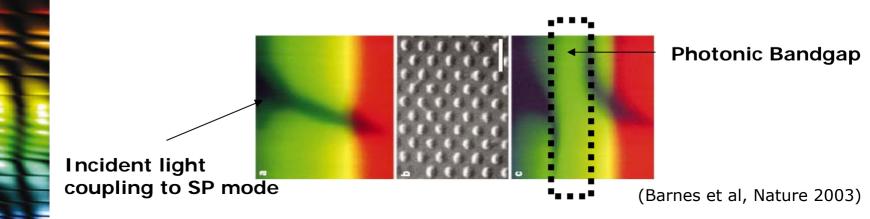





Optical near field intensity

(Krenn et al, Europhys. Letts. 2002)

#### Surface Plasmon Photonic Bandgaps (SPPBG)

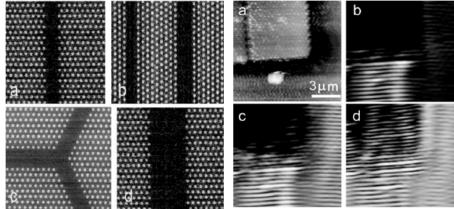

Regions of periodic index modulations that form a 'stop' band



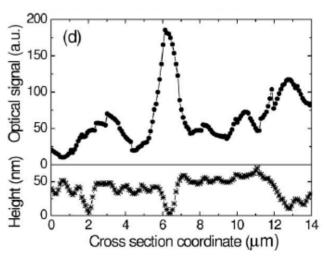
(Barnes et al, Nature 2003)

Bandgap Period:  $a = (1/2) \lambda_{SP}$ 

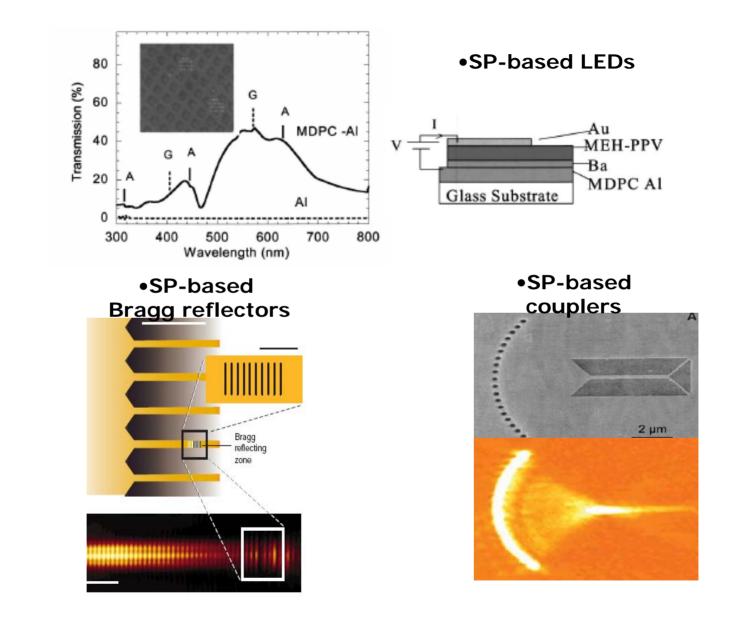
High density of SP states at band edgeIncrease in field enhancement




#### Waveguiding with SPPBG

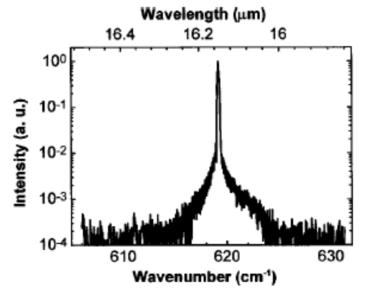

•SPP guided along  $\Gamma K$  line defect

•Triangular lattice with 400 nm period on a 45nm gold film



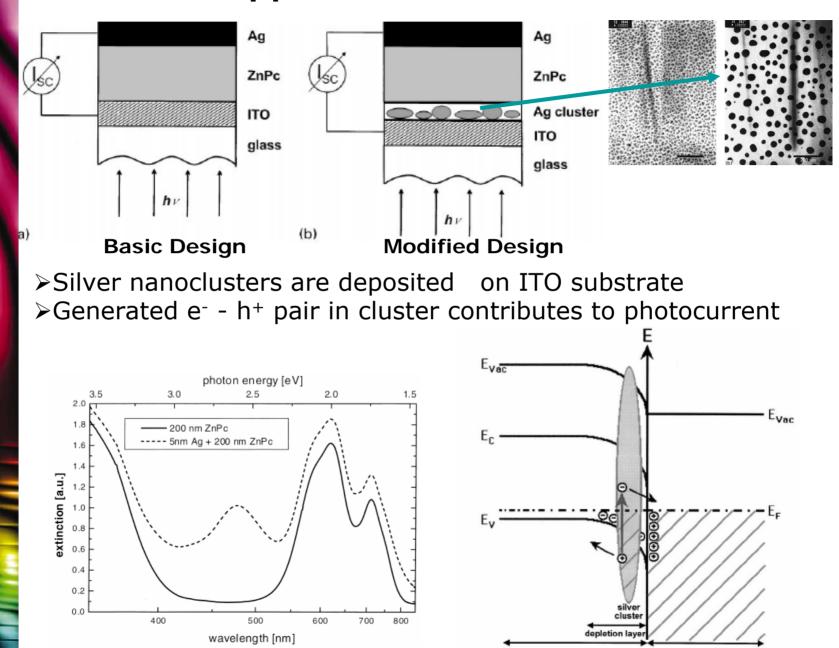



Reflectivity measurements conclusively prove the presence of an optical bandgap !




#### **Surface Plasmon Photonic Devices**




#### **Other Applications - Lasers**

- >Operate in the far-IR (>15  $\mu$ m)
- ≻Low loss
- Low lasing threshold
- Consist of 300 nm gold film deposited on quantum cascade active materials
- >Total epitaxial thickness: 4  $\mu$ m
- >Dimensions of device: 25  $\mu$ m wide and 800  $\mu$ m long



Spectrum of emission of 50 ns pulses at 84.2 kHz

#### **Other Applications – Solar cells**



ZnPc-film

ITO



#### **Future Directions**

- •Light generation: organic LEDs
- •Components for photonic circuits
- •SPR sensors
- •Designing of SP-based devices
- Fabrication of SP-based devices